Skip to Content

结构化输出

结构化输出让模型按照你指定的 JSON 格式返回数据,适用于数据提取、分类标注、表单填充等场景。

JSON Mode

最简单的结构化输出方式,强制模型返回合法 JSON:

json_mode.py
from openai import OpenAI client = OpenAI( base_url="https://api.ofox.ai/v1", api_key="<你的 OFOXAI_API_KEY>" ) response = client.chat.completions.create( model="openai/gpt-4o", messages=[ {"role": "system", "content": "你是一个数据提取助手。请以 JSON 格式返回结果。"}, {"role": "user", "content": "提取以下文本中的人名、公司和职位:张三是阿里巴巴的高级工程师"} ], response_format={"type": "json_object"} ) import json result = json.loads(response.choices[0].message.content) print(result) # {"name": "张三", "company": "阿里巴巴", "title": "高级工程师"}

使用 JSON Mode 时,system prompt 中必须包含 “JSON” 关键词,否则部分模型可能忽略格式要求。

JSON Schema 约束

更精确地控制输出结构,确保字段名称和类型符合预期:

json_schema.py
response = client.chat.completions.create( model="openai/gpt-4o", messages=[ {"role": "user", "content": "分析这段用户评论的情感:这个产品太棒了,非常好用!"} ], response_format={ "type": "json_schema", "json_schema": { "name": "sentiment_analysis", "schema": { "type": "object", "properties": { "sentiment": { "type": "string", "enum": ["positive", "negative", "neutral"], "description": "情感倾向" }, "confidence": { "type": "number", "description": "置信度 0-1" }, "keywords": { "type": "array", "items": {"type": "string"}, "description": "关键情感词" } }, "required": ["sentiment", "confidence", "keywords"], "additionalProperties": False } } } )

输出:

{ "sentiment": "positive", "confidence": 0.95, "keywords": ["太棒了", "非常好用"] }

实际应用场景

数据提取

# 从非结构化文本提取结构化数据 response = client.chat.completions.create( model="openai/gpt-4o", messages=[{ "role": "user", "content": """提取以下订单信息: 客户李四于2025年1月15日下单购买了3台MacBook Pro, 单价18999元,收货地址是北京市朝阳区xxx路123号""" }], response_format={ "type": "json_schema", "json_schema": { "name": "order_info", "schema": { "type": "object", "properties": { "customer": {"type": "string"}, "date": {"type": "string"}, "items": { "type": "array", "items": { "type": "object", "properties": { "name": {"type": "string"}, "quantity": {"type": "integer"}, "unit_price": {"type": "number"} } } }, "address": {"type": "string"} }, "required": ["customer", "date", "items", "address"] } } } )

分类标注

# 多标签分类 response = client.chat.completions.create( model="openai/gpt-4o", messages=[{ "role": "user", "content": "分类这篇文章的主题:AI 技术在医疗领域的应用越来越广泛..." }], response_format={ "type": "json_schema", "json_schema": { "name": "classification", "schema": { "type": "object", "properties": { "primary_category": {"type": "string"}, "secondary_categories": { "type": "array", "items": {"type": "string"} }, "tags": { "type": "array", "items": {"type": "string"} } }, "required": ["primary_category"] } } } )

支持的模型

模型JSON ModeJSON Schema
openai/gpt-4o
openai/gpt-4o-mini
anthropic/claude-sonnet-4.5
google/gemini-2.5-flash

不支持 JSON Schema 的模型可以通过在 system prompt 中详细描述期望的 JSON 格式来实现类似效果。